Exercise 336

For the following problems, consider radioactive dating. A human skeleton is found in an archeological dig. Carbon dating is implemented to determine how old the skeleton is by using the equation $y=e^{r t}$, where y is the ratio of radiocarbon still present in the material, t is the number of years passed, and $r=-0.0001210$ is the decay rate of radiocarbon.

Find the inverse of the carbon-dating equation. What does it mean? If there is 25% radiocarbon, how old is the skeleton?

Solution

Start by switching y with t in the given equation.

$$
t=e^{r y}
$$

Solve for y by taking the natural logarithm of both sides.

$$
\ln y=\ln e^{r t}
$$

Use the property of logarithms that allows the exponent of the argument to be brought down in front.

$$
\ln y=(r t) \ln e
$$

Use the fact that $\ln e=1$.

$$
\ln y=r t
$$

Divide both sides by r.

$$
t=\frac{1}{r} \ln y
$$

This is the inverse function: It tells us how many years have passed for a given ratio of radiocarbon remaining. For example, if there's 25% radiocarbon remaining, then $y=0.25$ and

$$
t=\frac{1}{-0.0001210} \ln 0.25 \approx 11457
$$

which means the skeleton is 11,457 years old.

